

99% ALUMINA EE-C99

DESCRIPTION

Alumina, also known as aluminum oxide (Al₂O₃), is a compound primarily composed of aluminum and oxygen. It is one of the most widely used and important materials in various industries due to its exceptional physical and chemical properties. One specific type of alumina is 99% alumina, which refers to alumina with a purity level of around 99%.

PROS

- High Purity
- Exceptional Hardness and Wear Resistance
- Thermal Stability
- Electrical Insulation
- Chemical Inertness
- Biocompatibility
- Transparent Alumina
- Versatile Applications
- High-Temperature Resistance
- Corrosion Resistance

CONS

- Brittle and Susceptible to Fracture
- Limited Ductility
- High Processing Costs
- Limited Design Flexibility
- Limited Impact Resistance
- Susceptible to Thermal Shock
- Limited Machinability
- Can Be Challenging to Bond or Join

APPLICATIONS:

APPLICATION AREA	EXAMPLE OF USE	
ELECTRONICS AND ELECTRICAL ENGINEERING	Ceramic substrates for ICs, insulators, connectors	
MECHANICAL AND INDUSTRIAL	Cutting tools, wear-resistant components, bearings	
MEDICAL AND DENTAL TECHNOLOGY	Orthopedic implants, dental prosthetics, surgical tools	
AUTOMOTIVE INDUSTRY	Spark plug insulators, emission control components	
AEROSPACE AND AVIATION	High-temperature aerospace components, insulators	
CHEMICAL AND PROCESS INDUSTRIES	Corrosion-resistant components, catalyst supports	
OPTICS AND TRANSPARENT CERAMICS	Windows, lenses, optoelectronic components	
ENERGY INDUSTRY	Electrical components, fuel cells, thermal barriers	
BIOMEDICAL AND BIOTECHNOLOGY	Biocompatible implants, lab ware, medical research	
CERAMICS INDUSTRY	Specialty ceramic production, advanced ceramics	

*Please note that all values quoted are based on test pieces and may vary according to component design. These values are not guaranteed in anyway whatsoever and should only be treated as indicative and for guidance only.

Property	Unit	Value
Melting Point	°C	~2072 - 2078
Density	g/cm ³	3.9 - 3.97
Thermal Conductivity	20°C W/(m·K)	20 - 35
Coefficient of Thermal Expansion	10 ^{−4} /°C	7.1 - 8.0
Specific Heat Capacity	J/(g·°C)	0.75 - 1.1
Young's Modulus	GPa	300 - 400
Poisson's Ratio	-	0.21 - 0.30
Vickers Hardness	Kgf/mm ²	1300 - 1700
Mohs Hardness	-	9
Electrical Resistivity	$\Omega \cdot \mathrm{cm}$	$10^{12} - 10^{16}$
Transparency (Thin Layers)	-	Partially Transparent